471 research outputs found

    Quiescent thermal emission from neutron stars in LMXBs

    Get PDF
    We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in x-rays (outbursts). The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659-29, KS 1731-260, EXO 0748-676, XTE J1701-462 and IGR J17480-2446. We find that the evolution of MXB 1659-29, KS 1731-260 and EXO 0748-676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701-462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480-2446 with an additional heat deposition in the outer crust from shallow sources.Comment: 19 pages, 32 figures, 2 Append., revised version accepted for publication in Astronomy & Astrophysic

    Population synthesis of isolated Neutron Stars with magneto--rotational evolution

    Get PDF
    We revisit the population synthesis of isolated radio-pulsars incorporating recent advances on the evolution of the magnetic field and the angle between the magnetic and rotational axes from new simulations of the magneto-thermal evolution and magnetosphere models, respectively. An interesting novelty in our approach is that we do not assume the existence of a death line. We discuss regions in parameter space that are more consistent with the observational data. In particular, we find that any broad distribution of birth spin periods with P00.5P_0\lesssim 0.5 s can fit the data, and that if the alignment angle is allowed to vary consistently with the torque model, realistic magnetospheric models are favoured compared to models with classical magneto-dipolar radiation losses. Assuming that the initial magnetic field is given by a lognormal distribution, our optimal model has mean strength logB0[G]13.013.2\langle\log B_0{\rm [G]}\rangle \approx 13.0-13.2 with width σ(logB0)=0.60.7\sigma (\log B_0) = 0.6-0.7. However, there are strong correlations between parameters. This degeneracy in the parameter space can be broken by an independent estimate of the pulsar birth rate or by future studies correlating this information with the population in other observational bands (X-rays and γ\gamma-rays).Comment: 10 pages, 9 figures, submitted and accepted to MNRAS, comments welcom

    The relevance of ambipolar diffusion for neutron star evolution

    Get PDF
    We study ambipolar diffusion in strongly magnetised neutron stars, with special focus on the effects of neutrino reaction rates and the impact of a superfluid/superconducting transition in the neutron star core. For axisymmetric magnetic field configurations, we determine the deviation from β\beta-equilibrium induced by the magnetic force and calculate the velocity of the slow, quasi-stationary, ambipolar drift. We study the temperature dependence of the velocity pattern and clearly identify the transition to a predominantly solenoidal flow. For stars without superconducting/superfluid constituents and with a mixed poloidal-toroidal magnetic field of typical magnetar strength, we find that ambipolar diffusion proceeds fast enough to have a significant impact on the magnetic field evolution only at low core temperatures, T12×108T \lesssim 1-2\times10^8 K. The ambipolar diffusion timescale becomes appreciably shorter when fast neutrino reactions are present, because the possibility to balance part of the magnetic force with pressure gradients is reduced. We also find short ambipolar diffusion timescales in the case of superconducting cores for T109T \lesssim 10^9 K, due to the reduced interaction between protons and neutrons. In the most favourable scenario, with fast neutrino reactions and superconducting cores, ambipolar diffusion results in advection velocities of several km/kyr. This velocity can substantially reorganize magnetic fields in magnetar cores, in a way that can only be confirmed by dynamical simulations.Comment: 14 pages, 11 figures, version accepted for publication in MNRA

    Spectral features in isolated neutron stars induced by inhomogeneous surface temperatures

    Get PDF
    The thermal X-ray spectra of several isolated neutron stars display deviations from a pure blackbody. The accurate physical interpretation of these spectral features bears profound implications for our understanding of the atmospheric composition, magnetic field strength and topology, and equation of state of dense matter. With specific details varying from source to source, common explanations for the features have ranged from atomic transitions in the magnetized atmospheres or condensed surface, to cyclotron lines generated in a hot ionized layer near the surface. Here we quantitatively evaluate the X-ray spectral distortions induced by inhomogeneous temperature distributions of the neutron star surface. To this aim, we explore several surface temperature distributions, we simulate their corresponding general relativistic X-ray spectra (assuming an isotropic, blackbody emission), and fit the latter with a single blackbody model. We find that, in some cases, the presence of a spurious 'spectral line' is required at a high significance level in order to obtain statistically acceptable fits, with central energy and equivalent width similar to the values typically observed. We also perform a fit to a specific object, RX J0806.4-4123, finding several surface temperature distributions able to model the observed spectrum. The explored effect is unlikely to work in all sources with detected lines, but in some cases it can indeed be responsible for the appearance of such lines. Our results enforce the idea that surface temperature anisotropy can be an important factor that should be considered and explored also in combination with more sophisticated emission models like atmospheres.Comment: 11 pages, 7 figures; accepted for publication in MNRA

    L'Assecat de les fruites: idees generals i la seva possibilitat d'utilització com a recurs didàctic

    Get PDF
    La conservació dels aliments és una de les preocupacions de la societat. Una de les tècniques més antigues és l'assecat, que començà sent una activitat artesanal i avui és un procés industrial rigorós, amb processos interessants que convé conèixer. En aquest treball es mostren els fonaments d'aquesta tècnica de conservació i alguns experiments que es poden proposar als estudiants.Food’s preservation is one of the concerns of human society. One of the techniques that has been used for centuries is drying, but what started as an artisanal activity is today a very rigorous industrial process that hides several interesting procedures. This work shows the scientific basis of this technique and some experiments that can be proposed to students

    Quasi-periodic oscillations in superfluid, relativistic magnetars with nuclear pasta phases

    Get PDF
    We study the torsional magneto-elastic oscillations of relativistic superfluid magnetars and explore the effects of a phase transition in the crust–core interface (nuclear pasta) which results in a weaker elastic response. Exploring various models with different extension of nuclear pasta phases, we find that the differences in the oscillation spectrum present in purely elastic modes (weak magnetic field) are smeared out with increasing strength of the magnetic field. For magnetar conditions, the main characteristic and features of models without nuclear pasta are preserved. We find, in general, two classes of magneto-elastic oscillations which exhibit a different oscillation pattern. For Bp 5 × 1014 G. We do not find any evidence of fundamental pure crustal modes in the low-frequency range (below 200 Hz) for Bp ≥ 1014 G.AP acknowledges support from the European Union under the Marie Sklodowska Curie Actions Individual Fellowship, grant agreement no 656370. This work is supported in part by the Spanish MINECO grant AYA2015-66899-C2-2-P, the programme PROMETEOII-2014-069 (Generalitat Valenciana), and by the NewCompstarCOST action MP1304

    Magnetars: Properties, Origin and Evolution

    Get PDF
    Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2–12 s) and spin-down rates (∼10−13–10−10 s s−1) indicate external dipole fields of ∼1013−15 G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.The work of SM has been partially supported through the agreement ASI-INAF I/037/12/0. JAP acknowledges support of the Spanish national grant AYA 2013-42184-P and of the New Compstar COST action MP1304. AM acknowledges support of an Australian Research Council Discovery Project grant

    Are pulsars born with a hidden magnetic field?

    Get PDF
    The observation of several neutron stars in the centre of supernova remnants and with significantly lower values of the dipolar magnetic field than the average radio-pulsar population has motivated a lively debate about their formation and origin, with controversial interpretations. A possible explanation requires the slow rotation of the protoneutron star at birth, which is unable to amplify its magnetic field to typical pulsar levels. An alternative possibility, the hidden magnetic field scenario, considers the accretion of the fallback of the supernova debris on to the neutron star as responsible for the submergence (or screening) of the field and its apparently low value. In this paper, we study under which conditions the magnetic field of a neutron star can be buried into the crust due to an accreting, conducting fluid. For this purpose, we consider a spherically symmetric calculation in general relativity to estimate the balance between the incoming accretion flow and the magnetosphere. Our study analyses several models with different specific entropy, composition, and neutron star masses. The main conclusion of our work is that typical magnetic fields of a few times 1012 G can be buried by accreting only 10−3–10−2 M⊙, a relatively modest amount of mass. In view of this result, the central compact object scenario should not be considered unusual, and we predict that anomalously weak magnetic fields should be common in very young (< few kyr) neutron stars.This work has been supported by the Spanish MINECO grants AYA2013-40979-P and AYA2013-42184-P and by the Generalitat Valenciana (PROMETEOII-2014-069)
    corecore